Physical Properties of Wood
Contents |
Introduction
Wood is one of the most versatile and widely used materials in the world. It can be used in anything from wood carving and creating small wooden items, such as chairs and rocking horses, to building timber structures and sheds.
It also has a lot of scientific properties associated with it, and every type of wood that is available can exhibit similar, and also different, properties. As such, it is important to understand how different types of wood can be used, so you can make sure that you don’t use the wrong type of wood in your project.
Types of wood
There are two distinct types of wood:
- Hardwoods come from deciduous trees – trees whose leaves fall each autumn – such as oak, mahogany, beech, and birch.
- Softwoods come from coniferous trees – trees whose cones/needles remain all year round – such as cedar, spruce, fir, cypress, and pine.
Specific gravity
The specific gravity (SG) of a substance, is the ratio between the density of the specific substance and the density of a reference substance provided which occupies the same volume. In most cases, the reference substance is water, as its density, in terms of grams per cubic centimetre, is one.
If moisture content is neglected or minimised, the more rings that a tree has within a given space, the denser it is, meaning its specific gravity is higher. Woods that have a higher specific gravity tend to have more lignin in their cells – this increases the rigidity of the wood and its resistance to rotting – and fewer air spaces, meaning that it can’t intake water easily compared to lower specific gravity woods.
Moisture content
One of the most noticeable properties of wood is that it is a hygroscopic material, meaning that it tends to absorb moisture from the air depending on the humidity of its surroundings. If the humidity is relatively high, then the wood will absorb more moisture.
Moisture content is very important when using wood in building, crafting, and manufacturing as it can affect the strength and stiffness of wood. This is because the presence of water affects the bonds between the fibres, effectively weakening the wood and making it more pliable.
Temperature
It is important to understand the thermal properties that wood exhibits.
Thermal conductivity is the ability of a material to conduct heat. For wood, it can range between 0.01 and 0.2 W m-1 K-1, which is relatively low, considering that for copper, it is over 400. The reason for this is because wood is quite porous. The values have a wide range because thermal conductivity decreases as the density decreases.
Thermal expansion is also relatively low in wood, meaning that it can retain its original structure in hot climates.
In freezing temperatures, the water within the wood can expand, causing the it to crack. However, since it has a low thermal conductivity, it means that, in cold weather, it can retain its warm interior and keep the cold weather out, which is why wood cabins are relatively common in arctic conditions.
--G&S Specialist Timber 09:10, 17 Jan 2017 (BST)
Related articles on Designing Buildings
- 11 things you didn't know about wood.
- A guide to the use of urban timber FB 50.
- Ancient Woodland.
- Birch wood.
- Boardwalk.
- Carpentry.
- Chip carving.
- Confederation of Timber Industries.
- Cross-laminated timber.
- Definition of tree for planning purposes.
- Engineered bamboo.
- European Union Timber Regulation.
- Forest Stewardship Council.
- Janka hardness rating scale.
- Lime wood.
- Padauk wood.
- Pine leaves.
- Plywood.
- Predicting service life of timber structures.
- Programme for the Endorsement of Forest Certification.
- Softwood.
- Timber.
- Timber preservation.
- Timber vs wood.
- Tree preservation order.
- Tree rights.
- Tulipwood.
- Types of timber.
- Veneer.
- Walnut.
- Wrot timber.
- Best Woods for Wood Carving
- The Differences Between Hardwood and Softwood
- The Scientific Properties of Wood
Featured articles and news
International Women's Day 8 March, 2025
Accelerating Action for For ALL Women and Girls: Rights. Equality. Empowerment.
Lack of construction careers advice threatens housing targets
CIOB warning on Government plans to accelerate housebuilding and development.
Shelter from the storm in Ukraine
Ukraine’s architects paving the path to recovery.
BSRIA market intelligence division key appointment
Lisa Wiltshire to lead rapidly growing Market Intelligence division.
A blueprint for construction’s sustainability efforts
Practical steps to achieve the United Nations Sustainable Development Goals.
Timber in Construction Roadmap
Ambitious plans from the Government to increase the use of timber in construction.
ECA digital series unveils road to net-zero.
Retrofit and Decarbonisation framework N9 launched
Aligned with LHCPG social value strategy and the Gold Standard.
Competence framework for sustainability
In the built environment launched by CIC and the Edge.
Institute of Roofing members welcomed into CIOB
IoR members transition to CIOB membership based on individual expertise and qualifications.
Join the Building Safety Linkedin group to stay up-to-date and join the debate.
Government responds to the final Grenfell Inquiry report
A with a brief summary with reactions to their response.
A brief description and background to this new February law.
Everything you need to know about building conservation and the historic environment.
NFCC publishes Industry White Paper on Remediation
Calling for a coordinated approach and cross-departmental Construction Skills Strategy to manage workforce development.
'who blames whom and for what, and there are three reasons for doing that: legal , cultural and moral"